ThL
Lösungsdiskussion
4
268
  • 0 Bewertung(en) - 0 im Durchschnitt
  • 1
  • 2
  • 3
  • 4
  • 5
Lösungsdiskussion
Sei M der Mittelpunkt des Plätzchenteiges (Schnittpunkt AB/CD). Dann ist der Radius r des Teiges gleich der Strecke MF. Sei x der Durchmesser der ausgestochenen Kreise. Den Radius r kann man nun über Pythagoras errechnen:
r² = x² + (EF/2)² = x² + 18²

Die Fläche a des Plätzchenteiges ist pi * r², also pi* (x² + 18²) = pi * x² + pi * 18².

Die Fläche jedes der ausgeschnittenen Plätzchen ist pi * (x/2)² = pi * x² / 4.
Die vier Plätzchen zusammen haben also die Fläche pi * x².

Damit bleibt als Fläche des verbleibenden Teiges pi * x² + pi * 18² - pi * x² = pi * 18² = pi * 324
Das ist die eine Variante, fast ein bisschen eleganter fand ich den Weg über den Sehnensatz:

Ich nenne den Radius des großen Kreises R, den des kleinen r.
Gesucht ist Fläche des großen Kreises minus Fläche von vier kleinen Kreisen, also R²Pi-4r²Pi.

Die Sehne EF teilt die Sehne CD, in R+2r und R-2r - nach dem Euklidschen Sehnensatz entspricht dann das Produkt (R+2r)*(R-2r) dem Produkt der beiden Teile von EF, also (EF/2)*(EF/2)

--> R²-4r²=18²

Erweitert mit Pi: R²Pi-4r²Pi=18²Pi
Der Aha-Effekt tritt ein, weil es erst mal unabhängig davon ist, wie groß der große und der kleine Kreis tatsächlich sind. Irgendwann werden allerdings die kleinen Kreise im großen Kreis so groß, dass man gar nicht mehr vier kleine Kreise vernünftig ausstechen kann.
Meine erste Überlegung war, das Problem ist unterdefiniert, also musste es eine Invarianz (bzgl des Radius der ausgestochenen Kreise) geben.
Für den Radius 0 ergibt sich als Fläche trivialerweise 18^2*PI also 324*PI also Antwort 5.
Und dann kann man das noch prüfen durch ausrechnen Smile
Ich habe zunächst eine Skizze mit einer dicht gepackten Anordnung der Plätzchen gemacht und war dann erstaunt, dass die Restfläche auch beim Verkleinern/Vergrößern durch Verschieben von Punkt B konstant bleibt:
GeoGebra 2024-10


Gehe zu:


Benutzer, die gerade dieses Thema anschauen:
1 Gast/Gäste