By the way - Zum Konvergenzverhalten:
Schnellste Konvergenz in der Mitte für a=0.5
Symmetrische Konvergenzgeschwindigkeit Richtung Ränder 0 bzw 1: Für a=0.5+/-k gleiche Konvergenzgeschwindigkeit (0<k<0.5): je näher den Rändern, desto langsamere Konvergenz!
Für a=0: konstante Folgen, Rentier bewegt sich nicht bleibt stationär auf (1,1) da v_n immer (0,0) - lässt sich also ganz leicht einfangen.
Für a=1: Konvergente Teilfolgen x_2n und x_2n+1: Alternierend springt das Rentier "im Grenzwert" zwischen (1/3 / 1/3) und (-1/3 / -1/3) hin und her. da lim v_n = (-1)^n * (2/3 / 2/3)
Für Betrag(a)>1 Divergenz ohne konvergente Teilfolgen.
Schnellste Konvergenz in der Mitte für a=0.5
Symmetrische Konvergenzgeschwindigkeit Richtung Ränder 0 bzw 1: Für a=0.5+/-k gleiche Konvergenzgeschwindigkeit (0<k<0.5): je näher den Rändern, desto langsamere Konvergenz!
Für a=0: konstante Folgen, Rentier bewegt sich nicht bleibt stationär auf (1,1) da v_n immer (0,0) - lässt sich also ganz leicht einfangen.
Für a=1: Konvergente Teilfolgen x_2n und x_2n+1: Alternierend springt das Rentier "im Grenzwert" zwischen (1/3 / 1/3) und (-1/3 / -1/3) hin und her. da lim v_n = (-1)^n * (2/3 / 2/3)
Für Betrag(a)>1 Divergenz ohne konvergente Teilfolgen.