(Gestern, 11:20 AM)Feles schrieb: (Gestern, 10:25 AM)margarita schrieb: (12-22-2024, 07:53 PM)Feles schrieb: Was genau ist mit "Mindestanzahl" gemeint?
Soll für dieses "x" gelten, dass für alle Kartenkombinationen mit x Karten diese abgelegt werden können und x diesbezüglich minimal ist.
Oder soll zudem gelten (obwohl dies nirgends erwähnt wurde, aber vermutlich gemeint ist?), dass für jedes z >= x gelten soll, dass für alle Kartenkombinationen mit z Karten diese abgelegt werden können und x diesbezüglich minimal ist.
Wenn es z Karten im Spielstapel gibt und man x>=2 Karten zieht, dann kann man diese ablegen, egal welche man gezogen hat. Wenn man x+1 zieht kann man das natürlich auch machen, aber wenn man x-1 zieht, dann kann es passieren dass man nicht alle Karten ablegen kann, bzw. kann man bei x-1 nich für jedes Ziehen der Karten das Ablegen garantieren.
Dieses "natürlich" für x+1 ergibt sich mir nicht ganz, aber vielleicht übersehe ich auch etwas (und das wäre ein Teil der Lösung). Aber etwa für x = 1 (auch wenn dies ausgeschlossen wurde) gibt es für 2 Karten keine solche "natürliche" Schlussfolgerung, obwohl es immer für eine Karte geht.
Aber man kann dann wohl davon ausgehen, dass wenn es Konstellationen mit y Karten gibt, die funktionieren, aber wenn man eine dazu nimmt, sodass es nicht mehr geht, dann ist x > y.
Ja, das stimmt vielleicht war ich da zu voreilig. Vielelicht so, wenn man auch x+n immer ablegen kann, dann ich die gesuchte Antwort x, wobei n>0.