Seien K die Kosten für die Pakete.
So kann man sich schnell überlegen:
2 = K(3,3) < K(a,b) mit a < b, a+b = 6 (sinnvoll nur 2,4 und 1,5)
3 = K(2,3) < K(1,4)
3 = K(3,4) < K(2,5) oder K(1,6)
Abweichungen von 3 werden stärker bestraft.
Außerdem gilt: K(A,B) = K(A) + K(B) mit A, B Mengen von Geschenken und K(0) > 1.
Damit folgt, dass die optimale Lösung so viele Transporte wie Möglich mit 3 Geschenken macht. Entsprechend höchstens ein Transport mit 2 oder 4 Geschenken nötig ist, aber alles andere als Transporte mit diesen Werten ungünstiger ist. Und leere Transporte sind sowieso Geldverschwendung xD
Damit ist 3-3-4 die optimale Lösung.
So kann man sich schnell überlegen:
2 = K(3,3) < K(a,b) mit a < b, a+b = 6 (sinnvoll nur 2,4 und 1,5)
3 = K(2,3) < K(1,4)
3 = K(3,4) < K(2,5) oder K(1,6)
Abweichungen von 3 werden stärker bestraft.
Außerdem gilt: K(A,B) = K(A) + K(B) mit A, B Mengen von Geschenken und K(0) > 1.
Damit folgt, dass die optimale Lösung so viele Transporte wie Möglich mit 3 Geschenken macht. Entsprechend höchstens ein Transport mit 2 oder 4 Geschenken nötig ist, aber alles andere als Transporte mit diesen Werten ungünstiger ist. Und leere Transporte sind sowieso Geldverschwendung xD
Damit ist 3-3-4 die optimale Lösung.